Quantitative analysis of the ternary complex of RNA polymerase, cyclic AMP receptor protein and DNA by fluorescence anisotropy measurements.
نویسندگان
چکیده
The in vitro formation of transcription complexes with Escherichia coli RNA polymerase was monitored using fluorescence anisotropy measurements of labeled fragments of DNA. The multicomponent system consisted of holo or core RNA polymerase (RNAP) and lac or gal promoter fragments of DNA (in different configurations), in the presence or absence of CRP activator protein (wt or mutants) with its ligand, cAMP. Values of the apparent binding constants characterizing the system were obtained, as a result of all processes taking place in the system. The interaction of the promoters with core RNAP in the absence of CRP protein was characterized by apparent binding constants of 0.67 and 1.9 x 10(6) M(-1) for lac166 and gal178, respectively, and could be regarded as nonspecific. The presence of wt CRP enhanced the strength of the interaction of core RNAP with the promoter, and even in the case of gal promoter it made this interaction specific (apparent binding constant 2.93 x 10(7) M(-1)). Holo RNAP bound the promoters significantly more strongly than core RNAP did (apparent binding constants 1.46 and 40.14 x 10(6) M(-1) for lac166 and gal178, respectively), and the presence of CRP also enhanced the strength of these interactions. The mutation in activator region 1 of CRP did not cause any significant disturbances in the holo RNAP-lac promoter interaction, but mutation in activator region 2 of the activator protein substantially weakened the RNAP-gal promoter interaction.
منابع مشابه
Kinetics of transcription initiation at lacP1. Multiple roles of cyclic AMP receptor protein.
The cyclic AMP receptor protein (CRP) acts as a transcription activator at many promoters of Escherichia coli. We have examined the kinetics of open complex formation at the lacP1 promoter using tryptophan fluorescence of RNA polymerase and DNA fragments with 2-aminopurine substituted at specific positions. Apart from the closed complex formation and promoter clearance, we were able to detect t...
متن کاملInteractions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.
DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binar...
متن کاملActivation of σ28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization
The Escherichia coli aer regulatory region contains a single promoter that is recognized by RNA polymerase containing the flagellar sigma factor, sigma(28). Expression from this promoter is dependent on direct activation by the cyclic AMP receptor protein, which binds to a target centred 49.5 base pairs upstream from the transcript start. Activator-dependent transcription from the aer promoter ...
متن کاملA common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters.
We have shown previously that the cyclic AMP receptor protein (CRP) is not required after the formation of the open complex at the lac promoter (Tagami and Aiba, 1995, Nucleic Acids Res., 19, 6705-6712). In this paper, we investigate the role of CRP in transcription activation at the malT and gal promoters. At the malT promoter, RNA polymerase (RNAP) forms a nonproductive RNAP-promoter binary c...
متن کاملTranscription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit.
Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2008